F.No.J-11011/194/2016- IA II(I) Government of India Ministry of Environment, Forest and Climate Change (IA-II Section)

Indira Paryavaran Bhawan Jorbagh Road, New Delhi - 110003

Dated: 27th August, 2020

To

M/s Haldia Petrochemicals Limited

Tehsil Sutahata -I, Haldia District East Medinipur West Bengal - 721 602 E.Mail: Ashok.Ghosh@hpl.co.in

Sub: Expansion of Naphtha cracking facility and Petrochemical products at Tehsil Sutahata -I, Haldia, District East Medinipur, West Bengal- Amendment/Bifurcation of Environmental Clearance between M/s Haldia Petrochemicals Limited & M/s Advanced Performance Materials Private Limited- reg.

Sir.

This has reference to the proposal No. IA/WB/IND2/67219/2016 dated 17th April, 2019 for amendment/bifurcation and proposal No. IA/WB/IND2/138269/2020 dated 13th March, 2020 for transfer (split) of the environmental clearance dated 20th March, 2018 between M/s Haldia Petrochemicals Limited (HPL) to M/s Advanced Performance Materials Private Limited (AdPerMa), wholly owned subsidiary of HPL, without change of ownership.

2. The Ministry vide letter dated 20th March 2018 has granted environmental clearance to the project for expansion of Naphtha cracking facility and

& min

petrochemical products at Tehsil Sutahata -I, Haldia District, East Medinipur, West Bengal in favour of M/s Haldia Petrochemicals Limited (HPL).

3. Now, amendment/bifurcation/transfer of the said environmental clearance has been sought due to the business transfer agreement between M/s Haldia Petrochemicals Limited (HPL) and M/s Advanced Performance Materials Private Limited (AdPerMa). It was informed that M/s HPL has incorporated a wholly owned subsidiary in the name of M/s Advanced Performance Materials Private Limited (AdPerMa) in July 2017 to explore new opportunities downstream of HPL, which will help to de-risk HPL's cash flows by driving business in performance chemicals with flexibility to venture with technology partner and/or other value added partners. Butene -1 Project will be the initial project that will be transferred to AdPerMa and HPL has no objection in transferring applicable part of the EC to AdPerMa for Butene -1 plant along with associated infrastructure like storage and pipelines. The changes in EC would include the following:

Description	Existing Conditions		Bifurcation of products and infrastructure			
•			HPL		AdPerMa	
	Name of Product	KTA	Name of Product	KTA	Name of Product	KTA
1.	Ethylene	770	Ethylene	770	-	-
2.	Propylene	385	Propylene	385	-	-
3.	Polypropylene	341	Polypropylene	341	-	-
4.	High Density Poly Ethylene (HDPE)		High Density Poly Ethylene (HDPE)		-	
5.		386	Linear Low Density Poly Ethylene (LLDPE)		-	-
6.	Butadiene	111	Butadiene	111	-	-
7.	Benzene	175	Benzene	175		-
8.	Butene-1	30.2			Butene-1*	30.2
9.	MTBE	98.6			MTBE*	98.6

3/m

10.	C4 Raffinate	ŀ	C4 Raffinate	126 Note-	1	
11.	Vinyl Acetate Ethylene (VAE)		Vinyl Acetate Ethylene (VAE)		-	
12.	Mixed Butane	126 ^{Note}	Mixed Butane	126 Note -	2_	- 3
13.	Cyclo Pentane	8.2	Cyclo Pentane	8.2	2364 (181)	-
14.	Pyrolysis Gasoline	200	Pyrolysis Gasoline	200	_	
15.	Motor Spir (MS) Euro IV	it300	Motor Spiri (MS) Euro IV	t300	_	-
16.	Phenol	200	Phenol	200	-	
17.	Acetone	123	Acetone	123	-	-
18.	Carbon Black Feedstock (CBFS)	(100	Carbon Black Feedstock (CBFS)	100		-
19.	Poly Butylene Terephthalate (PBT)		Poly Butylene Terephthalate (PBT)	70		-
20.	Tetrahydrofuran (THF)	16	Tetrahydrofuran (THF)	16		-
21.	C6 Raffinate	64	C6 Raffinate	64		-
Additional Hazardous Chemical Storage Tank	Name of Product (No. of tanks)	Total Storage Quantity (MT)	Name of Product (No. of tanks)	Total Storage Quantity (MT)	Product	Total Storage Quantity (MT)
1.	Naphtha (1)	28,632	Naphtha (1)	28,632		
2.		3,080	Motor Spirit (1)	3,080	-	
3.	Hydrogenated Py-Gas (1)	3,560	Hydrogenated Py-Gas (1)	3,560	A. Comment	100
4.	MS Blending Tank (1)	932	MS Blending Tank (1)	932		-
5.	Butadiene (1)			1,271		
	Fuel Grade Naphtha (1)	9,380	Fuel Grade Naphtha (1)	9,380		983
7.	LPG (1)	10,000	LPG (1)	10,000	-	71%

8 min

8.	Methanol (2)	7,128	<u> </u>		Methanol (2)	7,128
9.	MTBE (2)	7,400	·		MTBE (2)	7,400
10.	MTBE (1)	2,072			MTBE (1)	2,072
11.	Phenol (3)	16,050	Phenol (3)	16,050	-	-
12.	Acetone (2)	7,910	Acetone (2)	7,910	_	-
13.	Butanediol (2)	6,324	Butanediol (2)	6,324	-	-
14.	THF (2)	3,556	THF (2)	3,556	-	-
15.	VAM (2)	10,274	VAM (2)	10,274	•	-
16.	VAE (2)	7,520	VAE (2)	7,520	-	-
17.	NaOH 50% (Caustic Soda) (2)		NaOH 50% (Caustic Soda) (2)		-	-
18.	\ /	478	\ /	478	-	-
Land (ha)	453.00		451.48		1.519	
Manpower (Permanent)					5 (additional shall be sourced)	
Manpower (Contractual)	100-150	\	100-150		e de la companya de La companya de la companya de l	
Power (MW)	19		18.24		0.76	
Steam (TPH)	172.25				23.7	
Power and	Additional 1X3				Sourced fro	m HPL
Steam Source	CSTG and 3X1 Coal Fired in existing Power Plant	Boiler	CSTG and 3X Coal Fired in existing Capt Plant	Boiler		
Water (MGD)			9.842 (Sourced from Geonkhali Water Supply System)			
Effluent (m ³ /day)	1000 (Effluent discha be treated in I	rged wil	937.6 (Effluent discha be treated in	arged will Integrated		reated in

3/mi

Catalysts MT/3-5 years (Hazardous waste)	(To be handled by HPL)	45.68 (To be handled by AdPerMa and finally disposed by HPL)
Project Cost in Crores (INR)	4064	246

Note-1: In EC approved by MoEFCC on 20th Mar 2018, C4 Raffinate from Naphtha Cracker Associated Unit was considered transferred as feedstock to Butene-1 plant to produce Butene-1 and MTBE. Accordingly, C4 Raffinate was not shown in the product slate of HPL. After proposed bifurcation of EC, HPL would produce and transfer C4 Raffinate to AdPerMa as feedstock to Butene-1 plant. Thus, HPL's product slate shall include C4 Raffinate as product.

 $^{Note-2}$. Maximum production in case Butene-1 plant is non-operational. Normal production would be 33 kTA.

4. The proposal for amendment/bifurcation was considered by the Expert Appraisal Committee (Industry-2) in its meetings held during 30-31 May, 2019, 28-29 August, 2019 and 20-22 November, 2019. Subsequent to submission of the proposal for transfer of environmental clearance by the project proponent, the proposal has been referred to the Committee. The proposal was considered by the EAC in its meeting held on 17th July, 2020.

M/s HPL has informed that M/s Advanced Performance Materials Private Limited (AdPerMa) is its wholly owned subsidiary and M/s HPL shall be responsible for all the environmental safeguards and compliance of the EC conditions. M/s AdPerMa shall be responsible for the production of Butene-1 & MTBE and subsequent process and marketing.

The Committee after detailed deliberations, is of the considered view that the Ministry may take a view on the applicability of the proposal in its present form, however, taking cognizance of submission of M/s HPL that they shall be responsible for all the environmental safeguards and compliance of the EC conditions, has recommended that M/s AdPerMa may be allowed to carry out production of Butene-1 and MTBE with all its associated facilities.

5. Based on recommendations of the EAC, the Ministry of Environment, Forest and Climate Change hereby accords approval to the amendment/bifurcation of the environmental clearance dated 20th March, 2018, to allow M/s AdPerMa to carry out production of Butene-1 and MTBE with all its associated facilities, with additional terms and conditions as under:-

8 mil

- i. M/s AdPerMa and M/s HPL shall comply with all the terms and conditions stipulated in the environmental clearance dated 20th March, 2018. As committed, M/s HPL shall be responsible for the environmental safeguards and overall compliance of the conditions in the said EC.
- **6.** This issues with approval of the competent authority.

(Ashok Kr. Pateshwary) Director Tel.No. 24695290

Copy to:-

- 1. The Deputy DGF (C), MoEF&CC Regional Office (EZ), A/3, Chandersekharpur, Bhubaneswar 23 (Odisha)
- 2. The Secretary, Department of Environment, Government of West Bengal, Poura Bhavan, 4th Floor, FD-415/A, Sector-III, Bidhannagar, Kolkata 106 (WB)
- 3. The Member Secretary, Central Pollution Control Board, Parivesh Bhawan, CBD-cum-Office Complex, East Arjun Nagar, Delhi 32
- 4. The Member Secretary, West Bengal Pollution Control Board, Paribesh Bhavan, 10A, Block-L.A., Sector 3, Salt Lake City, Kolkata 98 (WB)
- M/s Advanced Performance Materials Private Limited, Tehsil Sutahata –I, Haldia, District East Medinipur, West Bengal – 721602
- 6. Guard File/Monitoring File/Website/Record File